Exercices sur les angles.

 

1–Les hauteurs dans un triangle

Soit ABC un triangle quelconque, H le point d’intersection des hauteurs issues de A et B.

Rendered by QuickLaTeX.com

Les points A,B,A’,B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'A'},\overrightarrow{B'B})=(\overrightarrow{AA'},\overrightarrow{AB})

Les points C,A’,H et B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'C},\overrightarrow{B'A'})=(\overrightarrow{HC'},\overrightarrow{HA})

La mesure de l’angle (\overrightarrow{C'A},\overrightarrow{C'H}) est donc \dfrac{\pi}{2} ce qui démontre le concours des hauteurs dans un triangle.

2–Les longueurs des côtés d’un triangle sont proportionnelles aux sinus des angles opposés
Continuer la lecture de Exercices sur les angles.