Résumé:
On se donne
une forme linéaire non nulle et on considère l’hyperplan vectoriel défini par T. On pose (c’est un hyperplan projectif) et
L’application qui à et associe est bien définie. C’est une opération de sur X , simplement transitive, de sorte qu’elle fait de un espace affine sous .
Si , sont deux points de X, le vecteur est le vecteur de défini par , il est indépendant du choix des représentants des points.
Situation 1 (T=x+y+z)
Soit et ,
Continuer la lecture de géométrie projective: Exemple de calculs